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Abstract
Objective—To test the potential of gene transfer approaches to enhance cardiac chronotropy in
a porcine system as a model of the human heart.
Methods—Plasmids encoding either the human â2 adrenergic receptor or control constructs
were injected into the right atria of native Yorkshire pig hearts. Percutaneous electrophysiological
recording catheters equipped with 33 gauge circular injection needles were positioned in the
mid-lateral right atrium. At the site of the earliest atrial potential the circular injection needles
were rotated into the myocardium and the â2 adrenergic receptor (n = 6) or control plasmid con-
structs (n = 5) were injected.
Results—Injection of the â2 adrenergic receptor construct significantly enhanced chronotropy
compared with control injections. The average (SD) heart rate of the pigs was 108 (16) beats/min
before injection. Two days after injection with control plasmids the heart rate was 127 (25) beats/
min (NS compared with preinjection rates). After injection with plasmid encoding the â2 adren-
ergic receptor the heart rate increased by 50% to 163 (33) beats/min (p < 0.05 compared with
preinjection and postinjection control rates).
Conclusions—The present studies showed in a large animal model that local targeting of gene
expression may be a feasible modality to regulate cardiac pacemaking activity. In addition, these
investigations provide an experimental basis for developing future clinical gene transfer
approaches to upregulate heart rate and modulate cardiac conduction.
(Heart 2001;86:559–562)
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Cardiac chronotropic incompetence is associ-
ated with increased morbidity and mortality.1–3

Permanent chronotropic disorders caused by
sinus node diseases include inappropriate sinus
bradycardia, sinus arrest, and sinus exit
block.4 5 These diseases are not confined to the
aged, being occasionally diagnosed in young
adults,6 7 and may have a familial
component.8–10 The pathology of the disease is
diverse. Anatomical studies have shown the
presence of fibrosis and sclerodermal infiltrates
in the sinus node associated with advanced
age.11 12 Ischaemic and infectious causes have
also been linked to chronotropic
incompetence.13–15 The treatment of these
disorders is limited, with only a minority of the
transient disorders amenable to medical treat-
ment.16 The majority of the causes of chrono-
tropic incompetence require the implantation
of an electronic pacemaker, either temporarily
or permanently.17 Future treatments for
chronotropic incompetence may be based on
therapeutics that can specifically enhance the
pacemaker potential of the endogenous cardiac
tissue and potentially diminish the necessity for
exogenous electronic devices.

Recent advances in biomedical research sug-
gest that gene therapy may be used in the treat-
ment of cardiovascular disease.18 19 Cardiac
pacemaking oVers a unique target in gene
therapy as modulation of the spontaneous
depolarisations in a selected set of cells may
enhance heart rate. Recently we reported the
development of a murine gene transfer model
to test the eVects of candidate genes on heart
rate.20 In this model constructs encoding the

human â2 adrenergic receptor were used under
in vitro, ex vivo, and in vivo conditions to
enhance selectively murine cardiac chronot-
ropy, suggesting a potential role for this
approach in future treatments of cardiac pace-
making disorders.

The translation into clinical treatment re-
quires that this strategy be further tested and
optimised in large animal models. The York-
shire pig model was used in the present study
based on its anatomical and physiological simi-
larity to the human cardiovascular system.21

These studies oVered the opportunity to
develop a transvenous catheter delivery gene
transfer approach to enhance cardiac chronot-
ropy, which may be adapted for future human
investigations.

Methods
PLASMID CONSTRUCTS

A 2.25 kb SalI-BamHI fragment, the human â2

adrenergic receptor complementary DNA
(cDNA), was ligated into a SalI-BamHI site 3'
to the â actin promoter in a pBR322 vector to
generate pBR322-â actin promoter-â2 adrener-
gic receptor. In similar fashion, the bacterial â
galactosidase gene was ligated to the â actin
promoter in a pBR322 vector and served as a
control vector. The plasmid construct encoding
the humanised green fluorescent protein22 with
a cytomegalovirus promoter element was pur-
chased from Clontech (Palo Alto, California,
USA) and served as a co-injection vector. The
recombinant DNA injection solutions (200 µl;
100 µg DNA/ml; 5:1 M/M â2 adrenergic recep-
tor or â galactosidase/green fluorescent protein)
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were prepared with in an injection vehicle of
phosphate buVered saline (PBS) with 20%
sucrose and 2% Evans blue.

INJECTION CATHETER

The electrophysiological recording catheter
was custom designed and manufactured by
Medtronic, Inc (Minneapolis, Minnesota,
USA). The polyurethane coated catheter was 7
French gauge and was supported with an 8
French sheath. The distal end of the catheter
was terminated with a three and a half turn 33
gauge corkscrew shaped needle allowing it to
impale tissues securely to record local intracar-
diac electrograms. The proximal end of the
catheter was terminated with a luer lock injec-
tion port allowing it to accept standard sized
syringes.

NATIVE HEART DNA INJECTION

Female Yorkshire pigs weighing 15–20 kg were
initially anaesthetised with intramuscular keta-
mine (10 g/kg) and intubated. The animals
were then given 2% isoflurane and ventilated
with a large animal ventilator (Hallowell model
2000, Pittsfield, MA, USA). Heart rate, blood
pressure, and arterial oxygen saturation were
monitored for the duration of the procedure.
By sterile technique, the right femoral vein was
exposed and cannulated, and an 8 French
sheath was inserted. Under fluoroscopic guid-
ance the electrophysiological injection catheter
was introduced and advanced to the right
atrium. Simultaneous six lead surface and int-
racardiac electrocardiograms were recorded
with a multichannel recorder (EVR PPG
Biomedical, Pittsburgh, PA, USA). The A-P
interval (ms), cycle length (ms), PR interval
(ms), and P wave axis (°) were measured. At
the site of the earliest A wave the injection nee-
dle was rotated 270° into the atrial myocar-
dium. The recombinant DNA construct
(200 µl) controls (n = 5) or â2 adrenergic
receptor samples (n = 6) were then injected
into the atrial myocardium in a randomised
double blinded protocol. The catheter was
then disengaged and removed from the animal.
The animals were observed for an additional
10 min and monitored for complications. The
vascular sheath was then removed, the vein was
sutured, and the incision site was closed.
Anaesthesia was then discontinued. After they
regained spontaneous respirations the animals
were placed in individual pens. The animals
were monitored hourly for the next 3 h and
then daily until termination of the experiments,
48–96 h after injection.

SERIAL SURFACE ECGs AND ANALYSIS

Serial surface ECGs were recorded daily for all
animals for the duration of the study. The pigs
were anaesthetised with ketamine as above.
Simultaneous six lead surface ECGs were
recorded. The cycle length, PR interval, and P
wave axis were measured (mean (SD)). Signifi-
cance was determined by a Student’s t test
analysis between average preinjection and
postinjection heart rates with the control and â2

adrenergic receptor plasmid injections, and
between the percentage change in paired

preinjection and postinjection heart rates with
the control and â2 adrenergic receptor plasmid
injections.

â2 ADRENERGIC RECEPTOR IMMUNOSTAINING

At the termination of the experiments, the ani-
mals were sacrificed and the hearts explanted.
The injection sites were identified by Evans
blue and harvested unfixed for cryosectioning
and immunostaining. The samples were cut in
to 10 µm sections and fixed with cold methanol
for 10 minutes. The sections were then washed
with PBS and blocked with 10% normal serum
in PBS for 20 minutes. Samples were then
incubated with a rabbit antihuman â2 adrener-
gic receptor polyclonal antibody (Santa Cruz
Biotechnologies, Santa Cruz, California, USA;
1.0 µg/ml) for one hour in a humid chamber at
25°C. The samples were washed with PBS
three times and then incubated with a second-
ary donkey antirabbit Cy3 polyclonal antibody
(Jackson ImmunoResearch, West Grove, Penn-
sylvania, USA) at a 1:1000 dilution in PBS
with 1% bovine serum albumin for one hour in
a humid chamber at room temperature. The
samples were washed with PBS three times and
mounted with 90% glycerol in PBS. Green
fluorescent protein expression was identified
by using epifluorescence filters (excitation
405 nm/emission 490 nm). Immunostaining
for the human â2 adrenergic receptor was iden-
tified by using epifluorescence filters (excita-
tion 488 nm/emission 540 nm).

Results
The animals were anaesthetised and intubated,
and venous access was obtained as described
above. The injection catheter was advanced to
the right lateral atrium under fluoroscopic
guidance (fig 1A). Simultaneous surface and
intracardiac ECGs were recorded. The cath-
eter was positioned at the site of the earliest
atrial activity, as fig 1B shows. The atrial
potential at the injection sight was similar in the
pigs injected with the control (14 (10) ms) and
the â2 adrenergic receptor encoding constructs
(12 (10) ms). In addition, both the average PR
interval and the P wave axis on the surface
ECG were similar in the groups before
injection (table 1). All the animals tolerated the
procedure well.

Serial surface ECGs recorded from the pigs
after construct injection showed that the
average PR interval and P wave axis were simi-
lar to the measurements before injection (table
1). The heart rate increased in the hearts
injected with the â2 adrenergic receptor plas-
mid compared to hearts with the control injec-
tions (fig 2A). The average heart rate of the pigs
was 108 (16) beats/min before injection. Two
days after injection with control plasmids the
heart rate was 127 (25) beats/min (p > 0.3
compared with preinjection). After injection
with plasmid encoding the â2 adrenergic recep-
tor the heart rate increased to 163 (33)
beats/min (p < 0.05 compared with preinjec-
tion), an approximately 50% increase in heart
rate (p < 0.01 compared with the change in
postinjection control heart rate) (fig 2B). All
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animals survived until the termination of the
experiments.

Injection of the cDNA constructs led to the
expression of the encoded genes. Sections of
the right atrial tissue at the site of injection
showed the presence of green fluorescent
protein (fig 2C,D). Immunostaining of the
injection site sections showed colocalisation of
the human â2 adrenergic receptor in the hearts
co-injected with the â2 adrenergic receptor
encoding constructs (fig 2D) but not in those
injected with control constructs (fig 2C).

Discussion
The present experiments were directed at
developing in vivo gene transfer techniques to
identify and study genes that can be used to
upregulate heart rate selectively and alter
cardiac rhythm in the intact heart in a large
animal model. Our goal is eventually to develop
a molecular or cellular based approach to the
treatment of cardiac chronotropic and conduc-
tion disorders. We have focused our initial
eVorts on a direct porcine cardiac gene transfer

system to translate our recently developed
murine cDNA chronotropic test system20 into a
clinically applicable endovascular therapeutic
approach.

The transvenous delivery of the cDNA con-
structs was electrophysiologically guided. Con-
structs were injected into the area of the sinus
node in an attempt to enhance the chronotropy
of the intact cardiac conduction system. The
mappings of the perisinus node injection sites
were in agreement with previous characterisa-
tions of the porcine sinus node.23 Delivery of
the cDNA encoding the human â2 adrenergic
receptor resulted in a significant increase in the
heart rate compared with control injections.
The non-significant change in the control
injection heart rate may have been caused by
the level of anaesthesia or the intubation of the
animals at baseline, as has previously been
shown in porcine anaesthesia studies.24 25

The â2 adrenergic receptor injection en-
hancement of chronotropy was not associated
with altered characteristics of atrial conduc-
tion, with no significant changes in either the
PR interval or the P wave axis. These data sug-
gest that the increased heart rate is mediated by

Figure 1 Cine of electrophysiological recording and
injection catheter (arrow head) during injection of
complementary DNA in to the porcine lateral right atrium
(A). Two examples are shown of surface and intracardiac
ECGs recorded before injection into the right atrium (B).
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Table 1 Electrocardiographic measurements

Baseline 48 h postinjection

Control â2AR Control â2AR

P wave axis (°) 65 (7) 56 (20) 60 (20) 62 (15)
PR interval (ms) 85 (10) 92 (9) 86 (8) 86 (9)

â2AR, â2 adrenergic receptor.

Figure 2 (A) Representative surface ECGs recorded 48
hours after injection of either control constructs or constructs
encoding â2 adrenergic receptor. (B) The average percentage
change in heart rate (HR) after injection of control
construct or â2 adrenergic receptor (â2 AR) encoding
plasmids (*p < 0.01 versus control). Dual fluorescence
micrographs of sections of right atrial tissue co-injected with
plasmids encoding green fluorescent protein and control
constructs (C) and with the human â2 adrenergic receptor
(D). Green fluorescent protein was visualised directly
(green), and the human â2 adrenergic receptor was detected
by immunostaining (red). Bar 32 µm.
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an increased rate of sinus node depolarisations.
Alternatively, the enhanced heart rate may
arise from a perisinus nodal atrial focus that
conducts normally through the atrium. Future
approaches will target atrial sites removed from
the sinus node, including the left atrium, to test
the potential of gene transfer to establish inde-
pendent pacemaking foci.

The transience of the increase in porcine
heart was expected given the use of plasmid
cDNA constructs. Previous research has shown
that injection of plasmid into the left ventricu-
lar myocardium may result in prolonged
construct expression (> 1–2 months)26 27 com-
pared with the 2–3 days observed in the
murine20 and the present porcine right atrial
injections. The limited duration seen in the
present study is likely multifactorial. Previous
studies have shown significant diVerences in
the expression of plasmid constructs injected
into diVerent muscle groups.28 29 These re-
gional variations may have an anatomical basis
as a result of technical injection limitations as
well as variable DNA diVusion rates in various
tissues.28 Additional factors, including atrial T
tubule density,30 31 may also account for the
relatively short period of plasmid mediated
enhancement of cardiac chronotropy, and
diVerent vector strategies will be required to
sustain the increased heart rates. To this end,
advances in adenoviral and adenoviral associ-
ated viral technologies oVer eYcient ap-
proaches for more extended expression of con-
structs in cardiac tissues.32–34 Moreover, cardiac
myocyte transplantation approaches35 36 may
allow for the engraftment of a more permanent
genetically engineered tissue to modulate the
cardiac conduction system.

In summary, these studies showed that the
basal rate of the heart can be enhanced by local
intravascular delivery of exogenous genes.
These investigations may provide a foundation
for developing novel therapeutics for cardiac
chronotropic disorders, such as sick sinus syn-
drome.

cDNA encoding the human â2 adrenergic receptor was the kind
gift of Dr Robert J Lefkowitz (Duke University Medical Center,
Durham, NC, USA). This work was done during the tenure of
a research fellowship from the American Heart Association,
Massachusetts AYliate, Inc. (to JME). This work was supported
by National Institutes of Health Grants HL41484 and
HLS9316 (RDR) and American Heart Association Fellowship
Award #13–419–967 (JME).
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